Orientational exchange approach to fluorescence anisotropy decay.

نویسندگان

  • D W Piston
  • E Gratton
چکیده

Fluorescence depolarization is a powerful technique in resolving dynamics of molecular systems. Data obtained in fluorescence depolarization experiments are highly complex. Mathematical models for analyzing data from depolarization due to rotational motion have been largely based on the rotational diffusion equation. These results have been verified by Monte Carlo simulations. It has been implicitly stated that a 90 degrees jump model between predefined orientations such as presented by G. Weber (1971. J. Chem. Phys. 55:2399-2411) should, for the specific case of fluorescence depolarization, give the same answer as the diffusion equation. Since the highly symmetric cases considered by G. Weber gave the same result as the diffusion equation, it has been desirable to use this method in cases where depolarization arises from both discrete processes and rotational diffusion. We have derived, in a compartmental formalism, the general result for excitation and emission dipoles not necessarily coincident with any of the principal rotational axes of the fluorophore from this exchange model, and have found it to be different from that of the diffusion equation approach. We have also verified this difference with a Monte Carlo simulation of our exchange model. This derivation allows us to define the limits of validity of the 90 degrees exchanges to model rotational diffusion. Also, for systems where movements may be jumps between a few preferred orientations, the actual physical mechanism of depolarization may not be accurately represented by continuous diffusion. The compartmental formalism developed here can be used to easily combine rotational motions with discrete position jumps or other level kinetics. While the difference between the diffusion equation and random walk of finite step size derivations has been presented for observations of different order properties for the compartmental formalism, we discuss the possibility of finding this difference by using the ratio of relaxation rates from a single experiment. Also,the temperature dependence of the exchange rates is calculated in relation to the Kramer's theory.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Distribution of Hydrophobic Probe Molecules in Lipid Bilayers. 2. Time-Resolved Fluorescence Anisotropy Study of Perylene in Vesicles

The orientational distribution and rotational dynamics of planar perylene molecules incorporated into spherical vesicles of palmitoyl-δ-9-oleoyl(16:0,18:1)phophatidylcholine (POPC) was studied using time-resolved fluorescence anisotropy. The experimental anisotropy decay curves were analyzed using a global target approach. Here, anisotropy curves obtained at six temperatures above the gel-lamel...

متن کامل

Proton transfer in ionic and neutral reverse micelles.

Proton-transfer kinetics in both ionic and neutral reverse micelles were studied by time-correlated single-photon counting investigations of the fluorescent photoacid 8-hydroxypyrene-1,3,6-trisulfonate (HPTS). Orientational dynamics of dissolved probe molecules in the water pools of the reverse micelles were also investigated by time-dependent fluorescence anisotropy measurements of MPTS, the m...

متن کامل

Orientational relaxation of liquid water molecules as an activated process

Femtosecond mid-infrared pump–probe spectroscopy is used to study the orientational relaxation of HDO molecules dissolved in liquid D2O. In this technique, the excitation of the O–H stretch vibration is used as a label in order to follow the orientational motion of the HDO molecules. The decay of the anisotropy is nonexponential with a typical time scale of 1 ps and can be described with a mode...

متن کامل

Local orientational order in liquids revealed by resonant vibrational energy transfer.

We demonstrate that local orientational ordering in a liquid can be observed in the decay of the vibrational anisotropy caused by resonant transfer of vibrational excitations between its constituent molecules. We show that the functional form of this decay is determined by the (distribution of) angles between the vibrating bonds of the molecules between which energy transfer occurs, and that th...

متن کامل

Orientational dynamics and dye-DNA interactions in a dye-labeled DNA aptamer.

We report the picosecond and nanosecond timescale rotational dynamics of a dye-labeled DNA oligonucleotide or "aptamer" designed to bind specifically to immunoglobulin E. Rotational dynamics in combination with fluorescence lifetime measurements provide information about dye-DNA interactions. Comparison of Texas Red (TR), fluorescein, and tetramethylrhodamine (TAMRA)-labeled aptamers reveals su...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Biophysical journal

دوره 56 6  شماره 

صفحات  -

تاریخ انتشار 1989